If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+4a-40=0
a = 1; b = 4; c = -40;
Δ = b2-4ac
Δ = 42-4·1·(-40)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{11}}{2*1}=\frac{-4-4\sqrt{11}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{11}}{2*1}=\frac{-4+4\sqrt{11}}{2} $
| 6x+8=12x+2 | | 4p=13p+18 | | 52=6h+5(h-5) | | 9–6x–15=-42 | | 6x(2x+1)=18 | | -4x+8=6x-10 | | 0.6x+1.3=0.9x-0.8 | | -35x85x-4=26 | | 6x+10/4=13 | | -7=(-6)+w | | 9-3m-2(m+4)=6 | | 4t+6=106= | | -6z+4=-7z-8-z | | 7x+3(2-2x)=5 | | 3w-2=180 | | 6x(2xx1)=18 | | 0.6+1.3=0.9x-0.8 | | t4=-13 | | -60=2x-14 | | 4x=1.2,7x-1.8x,6x+0.4,4x,6x+0.8 | | 4n+7=11 | | 3f−2=1 | | n-13/4=2 | | 4q+3+2q=-1 | | 7(5x-5=210 | | 7x9=(7x4)+(7x) | | 11x+17=48 | | 4g+2=6g-12 | | 2(x+3)-5x+6=-2x+19 | | 16(4-3m)=96(-{m}{2}+1) | | 7b+10=10+b | | 4x−5x+8=2 |